Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases

Authors

Štěpánková, V., Damborský, J., Chaloupková, R.

Source

Biotechnology Journal 8

Abstract

Haloalkane dehalogenases are microbial enzymes with a wide range of biotechnological applications, including biocatalysis. The use of organic co-solvents to solubilize their hydrophobic substrates is often necessary. In order to choose the most compatible co-solvent, the effects of 14 co-solvents on activity, stability and enantioselectivity of three model enzymes, DbjA, DhaA, and LinB, were evaluated. All co-solvents caused at high concentration loss of activity and conformational changes. The highest inactivation was induced by tetrahydrofuran, while more hydrophilic co-solvents, such as ethylene glycol and dimethyl sulfoxide, were better tolerated. The effects of co-solvents at low concentration were different for each enzyme-solvent pair. An increase in DbjA activity was induced by the majority of organic co-solvents tested, while activities of DhaA and LinB decreased at comparable concentrations of the same co-solvent. Moreover, a high increase of DbjA enantioselectivity was observed. Ethylene glycol and 1,4-dioxane were shown to have the most positive impact on the enantioselectivity. The favorable influence of these co-solvents on both activity and enantioselectivity makes DbjA suitable for biocatalytic applications. This study represents the first investigation of the effects of organic co-solvents on the biocatalytic performance of haloalkane dehalogenases and will pave the way for their broader use in industrial processes.

Source

Štěpánková, V., Damborský, J., Chaloupková, R.: Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases, Biotechnology Journal , 8, 719-729, 2013.
[BibTeX] [PDF]


sign in

E-mail:
Password:   

Create new user account

Forgot your password? Please contact us at caver@caver.cz.

HANDS-ON COMPUTATIONAL ENZYME DESIGN COURSE

user statistics

1219 citations
6553 registered users
112351x CAVER downloaded

news

April 15, 2024

CAVER was recently cited in NATURE paper entitled Bitter taste receptor activation by cholesterol...

Read more

CAVER was recently cited in the article entitled Constitute activation mechanism of a class C GPCR,...

Read more

CAVER was cited in NATURE Communications paper entitled Molecular mechanism underlying regulation of...

Read more


other tools

acknowledgement